

RAY FLUORESCENCE

稀土元素含量快速分析

单波长 X 射线荧光光谱 (HS XRF®) 与全息基本参数法 (Holospec FP 2.0)

应用概述

稀土有"工业黄金"之称,在军事、冶金、石油化工、电子材料、玻璃陶瓷等领域有着极其重要的应用价 值。在稀土探矿、开采、选矿、加工以及贸易过程中,稀土元素含量的测定贯穿其中,稀土元素共有 17 种, 由于大多在元素序数上相邻,物理化学性质十分接近,从而为各类光谱的检测方法带来挑战。常规检测稀土中 元素含量的方法有 ICP-AES、ICP-MS 等,需要对稀土矿物或产品进行湿法消解,分析周期长、检测成本高。

X 射线荧光光谱法 (XRF) 做为元素含量分析仪器之一,以其无损、样品处理简单、检测成本低等特点, 受到元素分析者的广泛关注与重视。多年来,XRF 对于分析稀土元素一直存在挑战,其一,多数稀土元素的荧 光谱线(K线系)处于33KeV以上,X射线管激发和探测器探测效率低;再者,采用经验系数法定量的软件系 统需要大量的稀土标准样品,这显然是不现实的。

安科慧生研制的单波长激发-能量色散 X 射线荧光光谱仪大幅提升稀土元素激发效率,元素分析范围涵盖 所有稀土元素, 软件采用自主知识产权的全息基本参数法, 在使用少量标准样品的情况下, 提升稀土元素检测 精度。

单波长激发-能量色散 X 射线荧光光谱与全息基本参数法的结合, 为稀土元素的检测带来新的分析手段!

方法原理

发明专利【专利号:ZL 2017 1 0285264.X】

1. 硬件核心技术:单波长激发-能量色散 X 射线荧光光谱仪 (HS XRF®)

单色化激发

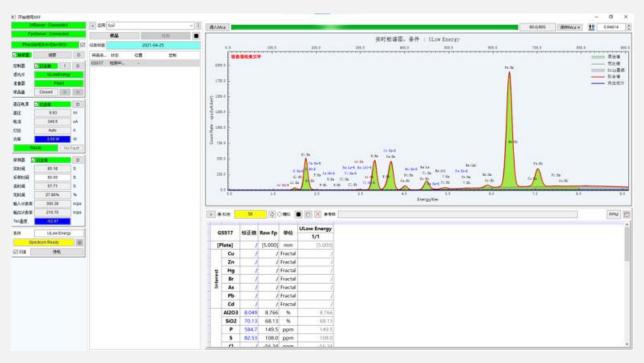
X 射线管出射谱经全聚焦型双曲面弯晶单色化入射样品,降低 X 射线 管连续散射线背景干扰 2 个数量级以上。

聚焦激发

能量聚焦,进一步增加 SDD 探测器接受样品元素荧光射线强度。

单波长聚焦激发技术

2. 全息基本参数法 (Holospec FP 2.0)


基本参数法 (FP: Fundamental Parameters method) 是 X 射线荧光领域的核心算法和研究重点。 安科慧生研发人员历时十几年,颁布全息基本参数法-Holospec FP 2.0,将基本参数法的应用提升 到前所未有的水平。

Holospec FP 与常规 FP 区别:

- 1) 全谱拟合: 当前唯一采用全谱拟合的基本参数法
- 2) 完整性:基本参数库结合先进的数学模型 (Advanced MM),从而完成对 XRF 整个物理学过程的数字化描述
- 3) 快速: CPU 多核并行运算结合 GPU 单元, 采集谱图与海 量运算同步完成
- 4) 可视化与支持用户开发:可视化图形界面与开放的参数设 4) 提升元素定量精度和扩展样品适应性

Holospec FP 功能与优势:

- 1) 通过精确计算消除 (或减少) XRF 物理 学各种效应
- 2) 达到元素无标定量分析精度
- 减少标准物质要求, 快速建立 XRF 元素 分析方法

性能数据

分析范围

稀土元素 (或氧化物):镧 (La)、铈 (Ce)、镨 (Pr)、钕 (Nd)、钷 (Pm)、钐 (Sm)、铕 (Eu)、钆 (Gd)、铽 (Tb)、镝 (Dy)、钬 (Ho)、铒 (Er)、铥 (Tm)、镱 (Yb)、镥 (Lu)、钪 (Sc)、钇 (Y)

无机元素及氧化物: MgO; Al2O3; SiO2; P2O5; S; Cl; K2O; CaO; TiO2; MnO; Fe2O3; CuO; ZnO; Th; Pb; Cs2O; Rb2O等

• 含量范围

稀土元素检出限: 1.0~3.0mg/kg (注: 不同稀土元素检出限略有差异)

稀土元素含量范围: 3.0mg/kg~99.99%

稀土种类:稀土矿物、稀土精矿、稀土制品等

• 重复性

表 1 轻稀土元素精密度数据汇总

单位: mg/kg

样品名称	测定次数	La ₂ O ₃	CeO ₂	Pr_6O_{11}	Nd ₂ O ₃	Sm_2O_3	Gd ₂ O ₃
GBW07160	1	112	29.4	40.0	238	123	239
	2	130	31.4	47.6	279	138	264
	3	127	34.3	46.2	274	142	251
	4	148	40.9	48.0	310	143	276
	5	121	36.2	45.5	276	134	234
	6	138	39.1	45.7	291	149	284
	7	120	32.4	42.5	254	131	251
	标准值(mg/kg)	111	34.8	45	220	150	270
	平均值(mg/kg)	128	34.8	45.1	275	137	257
	标准偏差	12.14	4.17	2.87	23.2	8.7	18.5
	相对标准偏差(%)	9%	12%	6%	8%	6%	7%

表 1 轻稀土元素精密度数据汇总

单位: mg/kg

样品名称	测定次数	Tb_4O_7	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm_2O_3	Yb_2O_3	Lu ₂ O ₃	Y_2O_3	Sc_2O_3
GBW07160	1	47.9	313	75.8	227	38.8	215	29.7	2995	9.1
	2	49.2	353	68.4	237	33.6	215	27.7	3002	8.0
	3	43.6	330	63.9	222	31.9	218	28.8	3012	8.9
	4	45.9	327	82.0	227	31.1	221	28.1	2998	8.7
	5	45.8	310	63.4	205	32.3	215	32.7	3007	8.1
	6	46.2	317	80.7	219	31.4	219	35.1	2993	9.8
	7	45.6	326	78.0	217	31.5	220	31.8	2993	8.2
	标准值(mg/kg)	57.7	360	75	220	31.6	220	30.4	3030	8.9
	平均值(mg/kg)	46.3	325.0	73.2	222	32.9	218	30.6	3000	8.7
	标准偏差	1.79	14.45	7.84	9.96	2.71	2.55	2.73	7.35	0.64
	相对标准偏差(%)	4%	4%	11%	4%	8%	1%	9%	0.5%	7%

对稀土矿石成分分析标准物质 GBW07158-GBW07161 四个标准样品进行分析,得到稀土氧化物总量的分析精度为:

• 分析精度

标样	GBW 07158	GBW 07159	GBW 07160	GBW 07161
标准值∑RExOy (%)	0.092	0.085	0.486	0.784
方法测试值 (%)	0.089	0.090	0.499	0.732
标准偏差	-3.3%	5.9%	2.7%	-5.4%

北京安科慧生科技有限公司 电话: 010-56865012 地址: 北京市通州区环科中路 2 号院 21 号楼 101-B http://www.ancoren.com/

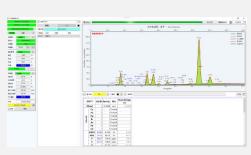
特点优势

样品处理简单

对稀土矿物采用破碎、研磨等均匀性处理至80目以上,对稀土制品有1cm²的 测试平面;

分析速度快

危害元素: S、CI、F, 常量元素: Na-Zn


应用范围宽

可以针对不同稀土矿物类型、稀土精矿、稀土制品、高纯稀土快速建立分析应 用方法:

方案展示

便携式 HS XRF: PHECDA-PRO 台式机 HS XRF: PHECDA-HES

全息基本参数法 (Holospec FP 2.0)

原创声明:本文除注明引用之外属于安科慧生(Ancoren)公司原创,若有转发和引用,必须注明出处, 否则可能涉及侵权行为!

更详细技术信息,请咨询安科慧生工作人员!

