

RAY FLUORESCENCE

快速基本参数法

基本参数法

基本参数法 (FP: Fundamental Parameters) 是 X 射线荧光领域的一项重要算法,是 XRF 厂商和相关研究单位关注的重点。

Criss 和 Birks 于 1968 年首先提出用基本参数校正元素间吸收增强效应。随后几十年,基本参数库逐步完善,相关理论计算公式逐步被证明和应用,通常基本参数法计算的范围有:

- 1) X射线管出射谱 (或测量得到);
- 2) X 射线光与物质相互作用,即产生元素荧光射线的过程;
- 3) 采用迭代求解算法对探测器采集谱和计算谱拟合计算,得到元素含量;

基本参数法是对 X 射线的产生入射、X 射线与物质相互作用、探测器的采集谱,根据已经掌握的数据库和物理理论进行计算,将计算谱与实测谱进行对比,通过迭代过程不断逼近真实含量。以迭代的收敛的结果,作为定量结果。因此基本参数法大大降低了对标准样品的依赖,目标是对 X 射线荧光光谱进行无标定量分析。

显然,基本参数法充分计算了基体吸收效应、元素间吸收-增强效应等,解决了 XRF 仪器对大量标准物质的依赖,拓宽了适应性,提升了 XRF 元素定量精度。基本参数法发展到现阶段,其计算精度与其软件能力和完整性等相关。

快速基本参数法提升点与优势

基本参数法对一束 X 射线光激发样品,产生元素荧光射线过程中的质量吸收系数、跃迁比、谱线分数、荧光产额等计算是基本参数库的内涵,软件采用了基本参数库就可称为基本参数法,显然仅仅采用了理论基本参数库是远远不够的,X 射线荧光过程中,仍有许多物理学现象或谱处理尚没有现成的数据库或理论公式。比如:探测器的某些效应、背景的扣除等等,尚有很大研究空间,这也是各 XRF 厂商基本参数法性能差异所在。

北京安科慧生科技有限公司 电话: 010-56865012 地址:北京市通州区环科中路 2 号院 21 号楼 http://www.ancoren.com/ 快速基本参数法(Fast FP®)是安科慧生研发人员历时十几年,在借助已有成熟的基本参数库以及发表的理论公式基础上,经过对 XRF 大量物理学实验,进一步开发了一系列先进数学模型(Advanced MM)。结合研发人员对软件开发技术的精通,2019 年颁布领先的快速基本参数法,也是国内首先商品化应用的基本参数法。

安科慧生研发人员在如下方面注入精力, Fast FP 具备如下特点和优势:

1) 完整性

通过对已经掌握的基本参数库和理论公式,以及研发的一系列先进数学模型 (Advanced MM), 快速基本参数法将 X 射线荧光整个物理过程用数学模型进行描述,其完整性涵盖了 XRF 整个物理学过程,这是算法理论的根基。其完整性至少包括:

- ① 计算光管原级射线谱
- ② 计算入射样品 X 射线谱
- ③ 计算样品出射 X 射线谱
- ④ 计算探测器响应谱

2) 通用性

快速基本参数法具备完整性的同时,也具备了通用性,其实现了各种 XRF 硬件条件下的理论计算,软件实现了对硬件的配置和适应。

3) 算法精度

快速基本参数法 (Fast FP) 另一特性是采用非线性最小二乘法全谱拟合,而非一般 FP 采用的对若干选定的谱线进行拟合。这一点极大提升计算精度,实现样品中主量元素和微量元素同步计算和定量分析。

同时 Fast FP 支持计算值与标准样品标准值之间建立校正曲线,进一步提升元素定量精度。

4) 软件技术 (快速)

计算机与软件技术的发展是基本参数法实现的基础,基本参数法运算量庞大,计算时间远大于探测器采集时间。快速基本参数法采用程序设计技巧和 CPU 多核并行运算,甚至部分运算由 GPU 单元完成,因此称为快速基本参数法。

5) 可视化与支持开发

Fast FP 功能包括正向计算和反向迭代,正向计算是在特定 XRF 系统内,Fast FP 对已知样品直接计算得到计算谱,此 XRF 系统探测器采集谱可以同步显示,通过对已知样品对比计算谱与探测器采集谱的一致性,可以评判 Fast FP 的计算准确性。

反向迭代是对未知样品计算定量的过程。其步骤是:

北京安科慧生科技有限公司 | 地址:北京市通州区环科中路 2 号院 21 号楼 |

- ① 经过解谱算法得到各元素的特征 X 射线的强度。根据强度之间的关系,设定各元素含量的初始值,计算得到 X 射线能谱。
- ② 根据计算的谱得到各元素的特征 X 射线的计算强度,根据计算强度与实测强度的差别,计算含量调整量,得到各元素含量的新值,再计算得到新的 X 射线能谱。
- ③ 不断重复步骤 2,经过若干次迭代,计算谱与实测谱基本重合,迭代结束,得到元素定量结果。

Fast FP 整个计算过程可见,并且算法软件支持客户根据样品类型设定元素(或化合物)种类等一系列参数,支持对各类样品的应用快速开发。

快速基本参数法应用示例

快速基本参数法扩展了 XRF 适用范围和元素定量精度,安科慧生研制的单波长 X 射线荧光光谱仪 MERAK 系列和高灵敏度 X 射线荧光光谱仪 PHECDA 系列采用 Fast FP 软件进行控制和计算。

下面是 Fast FP2.0 对土壤标准样品和植物类标准样品的定量精度示例。

在无校正曲线的前提下,利用快速基本参数对土壤标准样品(随机抽取 3 类不同土壤标样)进行检测,Fast FP2.0 为全元素检测,此文中仅以土壤中检测重金属为例,对比标准值与 FP 计算值,汇总如下表:

Cr(mg/kg) Ni(mg/kg) Cu(mg/kg) 样品名称 标准值 FP 值 相对误差 FP 值 相对误差 标准值 FP 值 相对误差 标准值 GSD-27 29.8±2.6 31.42 15.2±0.9 17.31 916±69 990 5% 14% 8% GSD-32 76.5 9% 28.1±1.7 28.67 2% 25.7±1.3 30.04 70 ± 6.7 17% GSS-60 48 ± 3 54.64 14% 23 ± 2 24.79 8% 21 ± 1 21.4 2% GSS-24 62 ± 2 63.43 9% 2% 24 ± 1 25.5 6% 28±1 30.38 ESS-1 57.2 61.95 8% 29.6 30.9 4% 20.9 24.71 18% 37.02 ESS-4 70.4 29.49 12% 84.06 19% 32.8 13% 26.3

表 1 标准值与 FP 计算值准确性对比

续表 1 标准值与 FP 计算值准确性对比

样品名称:	As(mg/kg)			Pb(mg/kg)			Cd(mg/kg)			
	标准值	FP 值	相对误差	标准值	FP 值	相对误差	标准值	FP 值	相对误差	
GSD-27	11±0.6	12.39	13%	22±0.6	23.01	5%	0.36±0.03	0.32	-11%	
GSD-32	33.9±1.1	33.89	0%	35.7±1.3	39.56	11%	0.38±0.04	0.347	-9%	
GSS-60	14.3±0.3	15.52	9%	18.7±0.6	18.88	1%	0.113±0.005	0.098	-13%	
GSS-24	15.8±0.9	16.82	6%	40±2	41.78	4%	0.106±0.007	0.092	-13%	
ESS-1	10.7	12.89	20%	23.6	24.42	3%	0.083	0.06	-28%	
ESS-4	11.4	13.84	21%	22.6	24.65	9%	0.083	0.07	-16%	

北京安科慧生科技有限公司 电话: 010-56865012 地址: 北京市通州区环科中路 2 号院 21 号楼 http://www.ancoren.com/

对比以上 FP 计算值与标准值可知:在未经过任何标准样品校正的基础上,FP 计算值与标准值的偏差基本在±20%以内,且相对误差具有一致性,为系统偏差,为取得更好的准确度,可采用少量标准样品进行校正系统误差。

同样,以植物样品为例,直接 Fast FP2.0 对标准样品检测,考察 FP 计算值与标准值之间相对误差:

表 2 标准值与 FP 计算值准确性对比

	As(mg/kg)			Pb(mg/kg)			Cd(mg/kg)		
样品名称	标准值	FP 值	相对 误差	标准值	FP 值	相对 误差	标准值	FP 值	相对 误差
GBW10018(鸡肉)	0.109±0.013	0.14	28%	0.11±0.02	0.12	6%	0.005	0.088	_
GBW10021(豆角)	0.15±0.02	0.22	46%	0.66 ± 0.07	0.69	5%	0.02	0.024	24%
GBW07604(杨树 叶)	0.37±0.09	0.41	13%	1.5±0.3	1.28	- 15%	0.32±0.07	0.31	-4%
GBW10048(芹菜)	0.39±0.08	0.43	10%	2.7±0.7	2.15	20%	0.092±0.006	0.15	_
GBW10049(大葱)	0.52±0.11	0.5	-3%	1.34±0.16	1.3	-3%	0.19±0.02	0.16	-14%
GBW(E)100377(糙 米)	0.498±0.030	0.58	18%	0.220±0.0 2	0.16	- 26%	0.261±0.020	0.32	24%
GBW(E)100380(玉 米)	0.277±0.023	0.33 7	22%	0.417±0.0 3	0.39	18%	0.045±0.004	0.09	_

续表 2 标准值与 FP 计算值准确性对比

样品名称		Cr(mg/kg)		Ni(mg/kg)			
件吅石柳	标准值	FP 值	相对误差	标准值	FP 值	相对误差	
GBW10018(鸡肉)	0.59±0.11	0.707	20%	0.15±0.03	0.253	_	
GBW10021(豆角)	0.66±0.08	0.704	5%	4.4±0.3	4.576	4%	
GBW07604(杨树叶)	0.55±0.07	0.494	-10%	1.9±0.3	1.84	-3%	
GBW10048(芹菜)	1.35±0.22	1.577	17%	1.8±0.4	1.823	1%	
GBW10049(大葱)	2.6±0.4	2.527	-3%	1.9	1.724	-9%	

针对植物类标准物质中微量重金属含量的 FP 计算值与标准值之间误差多在±30%以内,证明了快速基本参数法采用全谱拟合,对样品中微量元素含量无标定量取的了较高的准确性。

原创声明:本文除注明引用之外属于安科慧生 (Ancoren)公司原创,若有转发和引用,必须注明出处,否则可能涉及侵权行为!

更详细技术信息,请咨询安科慧生工作人员!

北京安科慧生科技有限公司 电话: 010-56865012 地址: 北京市通州区环科中路 2 号院 21 号楼 http://www.ancoren.com/